
ICAT

Performance:

Rules and

Public Steps

1 Rules, Public Tables, Public Steps

2 Authorization in ICAT architecture

3 Impact of authorization on

performance

Sections

Im
a
g
e
 ©

 S
T
F
C

 A
la

n
 F

o
rd

4 General comments

Rule
Allows creates, reads, updates, deletes (CRUD) to be performed on entities

Can be applied to users from specific groups, or everyone

Logic is defined as the field “what”:
• Datafile
• SELECT df FROM Datafile df JOIN df.dataset d JOIN d.investigation

i JOIN i.investigationInstruments ii JOIN ii.instrument inst JOIN
inst.instrumentScientists instSci JOIN instSci.user u WHERE
d.name='raw' AND u.name = :user

Rule
“what” is then turned into JPQL for three purposes:

CRUDJPQL
SELECT COUNT(Datafile$.id) FROM Datafile AS Datafile$ WHERE
Datafile$.id = :pkid

IncludeJPQL
SELECT Datafile$.id FROM Datafile AS Datafile$ WHERE
Datafile$.id IN (:pkids)

SearchJPQL

SELECT Datafile$.id FROM Datafile AS Datafile$

Public Tables
Public tables are defined by SQL:

SELECT DISTINCT r.bean
FROM Rule r LEFT JOIN r.grouping g
WHERE r.restricted = FALSE AND g IS NULL

• Restricted is false when the rule applies to all entities of a given type

• If the user group is null, then the rule is applied to everyone

• Effectively, this is just an ICAT rule that gets special treatment

• The entity names it applies to are cached

• Saves time when authorizing as do not need to evaluate anything

Public Steps
Much simpler than rules:

• Defines an origin entity (e.g. Investigation)

• Defines a field on that entity (e.g. samples)

If there is a rule which lets you see the former, then implicitly you are allowed to see

the latter

Cached like public tables are

Used for include queries (potentially recursively)

Root Access
Separate to the User/UserGroup tables, run.properties for ICAT server defines:

rootUserNames = db/root simple/root

Before using Rules orPublicSteps, the user is checked against this list

If the user “is root”, then they automatically pass all authorization

Entities

Manager

Exposed

Architecture: icat.server

ICATRest ICAT

Porter EntityBeanManager

GateKeeper

Rule

PublicStep Parser

SearchQuery

EntityInfoHandler

EntityBaseBean

Relationship

Entities

Manager

Exposed

Architecture: icat.server

ICATRest ICAT

Porter EntityBeanManager

GateKeeper

Rule

PublicStep Parser

SearchQuery

EntityInfoHandler

EntityBaseBean

Relationship

import
export

CRUD

im
p

o
rt

e

xp
o

rt

in
cl

ud
e

Lu
ce

n
e

IDS

Exposed

Architecture: ids.server

ICATRest ICAT Parser SearchQuery

DataSelection

as user as root
search DS

get DF
search DF

get DS

search INV search DF

IDS: SearchQuery
Identified in March 2021 for IDS: https://github.com/icatproject/ids.server/issues/115

Requests took longer than 30 minutes due to complexity of rules added by the

SearchQuery:
SELECT * FROM (SELECT a.*, ROWNUM rnum FROM (

SELECT t0.ID AS a1, t0.NAME AS a2, t0.LOCATION AS a3, t0.CREATE_ID AS a4, t0.MOD_ID AS a5 FROM DATAFILE t0 WHERE (

(

((t0.DATASET_ID = :1) AND (t0.LOCATION IS NOT NULL)) AND (t0.ID BETWEEN :2 AND :3)
) AND (

(t0.ID IN (
SELECT t1.ID FROM INVESTIGATION t3, DATASET t2, DATAFILE t1 WHERE ((t3.VISIT_ID IN (:4 , :5)) AND ((t2.ID = t1.DATASET_ID) AND (t3.ID =

t2.INVESTIGATION_ID)))

) OR t0.ID IN (
SELECT DISTINCT t4.ID FROM INVESTIGATIONINSTRUMENT t7, INVESTIGATION t6, DATASET t5, DATAFILE t4, USER_ t10, INSTRUMENTSCIENTIST t9,

INSTRUMENT t8 WHERE ((t10.NAME = :6) AND ((((((t5.ID = t4.DATASET_ID) AND (t6.ID = t5.INVESTIGATION_ID)) AND (t7.INVESTIGATION_ID = t6.ID)) AND (t8.ID =
t7.INSTRUMENT_ID)) AND (t9.INSTRUMENT_ID = t8.ID)) AND (t10.ID = t9.USER_ID)))

)) OR t0.ID IN (

SELECT DISTINCT t11.ID FROM INVESTIGATION t13, DATASET t12, DATAFILE t11, USER_ t15, INVESTIGATIONUSER t14 WHERE ((t15.NAME = :7) AND ((((t12.ID =
t11.DATASET_ID) AND (t13.ID = t12.INVESTIGATION_ID)) AND (t14.INVESTIGATION_ID = t13.ID)) AND (t15.ID = t14.USER_ID)))

)
)

)

) a WHERE ROWNUM <= :8) WHERE rnum > :9

https://github.com/icatproject/ids.server/issues/115

IDS: SearchQuery Solution
Authorize Datasets as normal (less expensive than Datafiles)

If the Dataset was authorized, skip Datafile authorization by using a root account to

perform the query

Controlled by config option

Comparable to a PublicStep between Dataset and Datafile

IDS: Includes
Also identified in March 2021 for IDS:

https://github.com/icatproject/ids.server/issues/117

Performing the following took 2 seconds (get with id provided):
Dataset ds INCLUDE ds.investigation.facility

Performing the following took 80ms:
SELECT ds.id, ds.name, ds.location, inv.id, inv.name, inv.visitId, fac.id, fac.name FROM
Dataset ds JOIN ds.investigation inv JOIN inv.facility fac WHERE ds.id=?

Authz methods differ in each case.

https://github.com/icatproject/ids.server/issues/117

IDS: Includes Solution?
Never addressed, but possible approaches would be:

• Use of PublicSteps: Dataset -> investigation, Investigation -> facility

• If not already in place, and if appropriate

• INCLUDE queries will send subsequent DB calls for each included entity

• If there’s a PublicStep in place, can be authorized within ICAT server

• Replace INCLUDE with JOINs:

• As documented the second query ran faster

• Uses the SearchQuery to perform authorization during the search

• On the other hand, this didn’t work well for the previous Datafile example…

icat.lucene: Searching
• icat.lucene component returns ids of

entities which match the search text

• icat.server performs authorization on

each result with a separate query to the

database

• If we don’t have enough authorized

results, go back for another batch and

repeat

• Once the frontend has a list of

authorized ids, it will submit another

query which will perform authorization

again

DataGatewayTopcat

DG-API

python-icat

icat.server

icat.lucene DB

Results = [{id, score}…]

Results = [{id, score}…]

icat.lucene: Searching Solution(s)
Alongside other changes to free text search:

• Get all metadata directly from the Lucene index (remove second DB call)

• Authorize ids in batches (configurable in size but ~1000 to 10000)

• Optional: return early if a minimum number of results found

• Optional: instead of searching entire index, only search results where the user is

InstrumentScientist or InvestigationUser

• Drastically limits number of returned results, and expect that all results

returned will pass authorization

• Configurable: timeout long running searches

icat.lucene: Includes
In order to get all metadata directly from the Lucene index, need to return related

metadata

• E.G. Dataset table has column for Investigation title in DataGateway:

icat.lucene has no concept of Rules or PublicSteps, and replicating this would be:

• Difficult – would need to index and keep these up to date in Lucene

• Probably slow – in principle need to check multiple includes for every result

icat.lucene: Includes Solution
Public Tables and Public Steps identify things we can quickly authorize, and are

cached in ICAT server

• From these, build cached lists of which Lucene fields are safe to return

• Only request these fields from Lucene in the first place

• At this point, only need to authorize the “main” entity being searched

Downsides are:

• Overly restrictive – doesn’t take all Rules into account

• Might not want to create a particular Public Step

General Comments
Areas of difficulty:

• INCLUDE queries

• Relies on “pruning” after original search, so can take longer

• Datafiles

• When there are a lot, things that normally work can break down (e.g.

SearchQuery)

Potential solutions:

• Hardcoded workarounds (using root, caching fields for Lucene)

• Creation of more PublicSteps (where possible)

• Syntax of query (hard to anticipate but has an impact)

Caveats
Authorization performance depends on a lot of things:

• Rules and Public Tables

• Public Steps

• Exact query syntax

• Who the current user is

• How much data does that user have access to

• How much data does that user NOT have access to

• SOAP versus Rest(like) API in icat.server

Ultimately difficult to make categorical statements about performance

	Default Section
	Slide 1
	Slide 2

	Definitions
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Architecture
	Slide 8
	Slide 9
	Slide 10

	Impact
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

	General
	Slide 19
	Slide 20

