
ICAT and 

SciCat

Evaluation
Testing of performance for 

future data volumes

Kevin Phipps

May 2023 (ICAT F2F meeting in Berlin)



• This work was done in 2019 as part of the Diamond Datastore Project 

looking at how to take the Diamond Archive into the future

• Disclaimer: both ICAT and SciCat have evolved since then so some 

findings may no longer be true

• The slides on ICAT performance were presented at the ICAT F2F in 2020

A cut down version of them will be presented here.

Introduction



• To analyse the responsiveness of the data catalogues to metadata growth​

• Simulate the metadata growth 6 years in the future by duplicating the data 

from 2018 a year a time​

• Measure the time taken to respond to queries after each ingestion step​

• Consider the queries as required by the frontend in the MyData and 

Browse views​

Objectives



Starting with a copy of the current database (2.5 billion files)

• Run 2 tests collecting query timing data

• Run a duplicator script to copy the data for 2018 as if it was being inserted 

for a new year (0.5 billion files)

• Repeat this 6 times – simulating 6 years into the future (5.5 billion files)

Test procedure



2 tests

• A “simple test” recording results using a high resolution counter
Contains 4 tests:

- find the first investigation with a given name

- find the first 50 datasets for the given investigation ID

- find the first 50 datafiles for the given dataset ID

- find a single datafile with a given ID

• A “long query” ordering the datafiles in a dataset by creation time and 

returning the first 50

Test types

Terminology: 
Investigation (ICAT) = Proposal (SciCat) = Visit (Diamond)



ICAT Simple test: results

Averaged timings across all 90 users. 100 timings done for each user with the 10 furthest from the mean being removed.



• Response time falls on runs 1 and 2 then rises noticeably before falling 

gradually from runs 3 to 6

• The rise is most likely due to the database moving nodes between runs 2 

and 3 

• Ignoring the rise, the average fall in response time was around 2.5% per 

year

• Overall, response times got faster!

Simple test: results analysis



ICAT Simple test: results by user type



• Queries run faster for read-all users

~10-15% faster when a single result is returned

~30-40% faster when 50 records are returned

• This is due to a simpler rule being used for “read-all” than for 

InstrumentScientists and InvestigationUsers which require multiple table 

joins

• Queries run slightly faster for Instrument Scientists than for Investigation 

Users

Simple test: user type results analysis



(Order the datafiles in a dataset by creation time and return the first 50)

• Took much longer to run than expected

• A full set of results was only collected for the first 9 users

“Long query” test



Long query: 9 users results



Long query: normalized and 

averaged results



• The rise between runs 2 and 3 was more pronounced than in the simple 

tests: ~50% rise compared to 10-20%

• Adjusting for the rise between runs 2 and 3, the overall rise over the other 

runs was 16%, equating to ~3% per year

• The rise was not consistent. There were 2 runs where there was actually a 

fall in the time taken to run the queries.

Long query results analysis



• For “simple” queries returning small amounts of unordered data, 

performance improves slightly as more data is added. This is not fully 

understood but may be due to Oracle caching or improving execution 

plans.

• For longer running queries requiring ordering of a large number of rows, 

performance does not degrade significantly as more data is added.

• In both cases the change was only a few percent per year of data added, 

which over the next 5-10 years should not be a concern.

Overall conclusions (ICAT)



Aim:

• To try to repeat the same performance testing that was done for ICAT and 

compare the results.

• During initial testing of SciCat it became clear that this was not going to be 

entirely possible, so:

- the simple test to retrieve a single proposal was repeated

- the “long” test was not possible so all the files for a Dataset were retrieved

(it is not possible to sort, filter or paginate Datafiles in SciCat)

SciCat Performance Testing



A couple of limitations were found:

• A limit of around 3000 Proposals per user (dependent on the length of 

Proposal names). 

For Diamond at the time, the top 3 users had just under 2000 Proposals.

• A limit of around 100,000 Datafiles per Dataset above which the request 

times out and no data is returned.

In the Diamond ICAT there many Datasets with more than 100,000 files –

and yes, we know this is not good!

SciCat Limitations



Proposal testing results

Instrument Scientists Read-all (admin) users Normal users

(Lightweight query retrieving a small 
amount of metadata about the Proposal)



• Response time correlation with the number of visits accessible to the user

Proposal testing results



Proposal testing results

Instrument Scientists Read-all (admin) users Normal users

(Same graph but with ICAT 
data added for comparison)

ICAT ave ~0.008s



• There seems to be a direct correlation between the number of visits a user is on and response times.

- Users on more visits experienced correspondingly increased response times compared to other 

users accessing the same data. 

- A doubling of the number of visits for a user resulted in roughly double the response time to 

access the same data.

• Response times in the equivalent ICAT test were quicker with an average around 8ms whilst most 

SciCat response times started between 10 and 20ms and rose significantly for some users. 

• Underlying response time increase due to data growth was low at around 5% over the 6 year period. 

For ICAT the response time fell by around 15%.

• The authorisation mechanism based on visit groups does not scale very well (for small queries), 

adding an (additional) average increase in response time of 35% for “normal” users.

Proposal test results



Dataset testing results (Heavy query retrieving the Dataset metadata 
and a list of all the files – as the front end does)



Dataset testing results

• Response time correlation with the number of files in the Dataset retrieved



• The response times hardly changed for each user throughout the runs. 

• The increase due to the number of visits was still measurable but with the longer response 

times, became negligible in the results.

• The SciCat backend (Catamel) and database appear to handle the increasing data size 

well with around a 5% increase in response times seen over the 6 year period (in line with 

increase for Proposal test). 

• The backend also appears to be able to return lists of files from a Dataset very quickly. 

A very repeatable rate of nearly 50,000 files per second was measured. 

From ICAT/Oracle the rate is likely to be more like 10,000/sec.

Note that for most purposes, particularly a web GUI, returning this many results would be 

impractical.

Dataset test results



• Overall the SciCat results were more repeatable and predictable than the results of the equivalent 

ICAT testing. 

• There was more variation in the ICAT results, some of it unexplainable.

• In the Proposal test, where it is easiest to compare ICAT and SciCat results, ICAT recorded faster 

response times, but differences in testing setups could account for this.

• The testing revealed some examples of the overhead that both catalogues add to perform 

authorisation.

• SciCat’s inability to sort, filter and paginate Datafiles was a concern for Diamond where we have so 

many historic Datasets containing thousands of files where this would be essential.

Conclusions from the performance testing



• Our Database Services team did not provide MongoDB databases, nor did we have any MongoDB 

experience in the group

• We still need to support ICATs for ISIS and the Central Laser Facility at RAL so a move to SciCat

would mean the group would need to either support both, or work towards migrating those facilities 

as well.

• The DataGateway project was already underway to become our new frontend for ICAT

• SciCat was not “production ready” at the time. We found a number of bugs whilst testing.

• A requirements analysis revealed that ICAT met about 50% and SciCat about 40%

• The Diamond archive system has a lot of tools in place and working for 10+ years. 

Many of these would need re-writing to work with SciCat. 

In particular, there was not the effort available in Diamond to support this.

Main reasons for keeping ICAT for Diamond





@STFC_matters Science and Technology Facilities CouncilScience and Technology Facilities Council


